Abstract

The entropy per rapidity produced in central Pb-Pb ultra-relativistic nuclear collisions at LHC energies is calculated using experimentally identified particle spectra and source radii estimated from Hanbury Brown-Twiss (HBT) correlations for particles π, k, p, Λ, Ω, and and π, k, p, Λ, and at and TeV, respectively. An artificial neural network (ANN) simulation model is used to estimate the entropy per rapidity at the considered energies. The simulation results are compared with equivalent experimental data, and a good agreement is achieved. A mathematical equation describing the experimental data is obtained. Extrapolation of the transverse momentum spectra at is required to calculate ; thus, we use two different fitting functions, the Tsallis distribution and hadron resonance gas (HRG) model. The success of the ANN model in describing the experimental measurements leads to the prediction of several spectra values for the mentioned particles, which may lead to further predictions in the absence of experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.