Abstract

In this work a thermodynamic analysis of a desiccant wheel is proposed to investigate and identify the optimum size and operating regime of this device. A steady state entropy generation expression, based on effectiveness parameters suitable for desiccant wheels operability, is obtained applying a control volume approach and assuming perfect gas behaviour of the binary air–vapour mixture. A new entropy generation number NL is defined using a minimum indicative value of the entropy generation SL,min and investigated in order to obtain useful criteria for desiccant wheels optimization. The effectiveness-NTU design method is employed by combining solution of thermal exchange efficiency for rotary heat exchanger with the characteristic potential method, under the conditions of heat and mass transfer analogy. The analysis is applied to a specific desiccant wheel and NL variation with NTU is explored under various operative conditions and wheels characteristics in terms of dimensionless velocity and flow unbalance ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.