Abstract

The present investigation deals with magnetized convective flow of Reiner-Rivlin liquid by stretched cylinder. Solutal and thermal transport analyses are discussed through Cattaneo-Christov heat and mass fluxes. Heat source and radiation effects are considered in thermal equation. Physical descriptions of chemical reaction and entropy generation are examined. By utilizing appropriate transformations, the model is transformed into dimensionless ordinary differential systems (ODEs). The obtained non-dimensional expressions are solved for convergent solutions by using optimal homotopy analysis method (OHAM). Influences for prominent variables on flow, concentration, temperature and entropy rate are explored. It is noticed that liquid flow enhances for mixed convection variable while opposite trend observed against magnetic field. Liquid flow is enhanced for buoyancy ratio parameter. Higher thermal relaxation time parameter results in thermal field enhancement. Entropy generation enhances against higher radiation variable. An enhancement in entropy rate is found for higher Brinkman number. Larger approximation of Schmidt number results in concentration reduction. Concentration decays for higher solutal relaxation time variable. Higher approximation of reaction variable decrease concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.