Abstract

PurposeThis study aims to enhance heat transfer efficiency while minimizing friction factor and entropy generation in the flow of Nickel zinc ferrite (NiZnFe2O4) nanoparticles suspended in multigrade 20W-40 motor oil (as specified by the Society of Automotive Engineers). The investigation focuses on the effects of the melting process, nonspherical particle shapes, thermal dispersion and viscous dissipation on the nanofluid flow.Design/methodology/approachThe fundamental governing equations are transformed into a set of similarity equations using Lie group transformations. The resulting set of equations is numerically solved using the spectral local linearization method. Additionally, sensitivity analysis using response surface methodology (RSM) is conducted to evaluate the influence of key parameters on response function.FindingsHigher dispersion reduces entropy production. Needle-shaped particles significantly enhance heat transfer by 27.65% with melting and reduce entropy generation by 45.32%. Increasing the Darcy number results in a reduction of friction by 16.06%, lower entropy by 31.72% and an increase in heat transfer by 17.26%. The Nusselt number is highly sensitive to thermal dispersion across melting and varying volume fraction parameters.Originality/valueThis study addresses a significant research gap by exploring the combined effects of melting, particle shapes and thermal dispersion on nanofluid flow, which has not been thoroughly investigated before. The focus on practical applications such as fuel cells, material processing, biomedicine and various cooling systems underscores its relevance to sectors such as nuclear reactors, tumor treatments and manufacturing. The incorporation of RSM for friction factor analysis introduces a unique dimension to the research, offering novel insights into optimizing nanofluid performance under diverse conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.