Abstract
Abstract In this paper, we introduce topological entropy for dynamical systems generated by a single local homeomorphism (Deaconu–Renault systems). More precisely, we generalize Adler, Konheim, and McAndrew’s definition of entropy via covers and Bowen’s definition of entropy via separated sets. We propose a definition of factor map between Deaconu–Renault systems and show that entropy (via separated sets) always decreases under uniformly continuous factor maps. Since the variational principle does not hold in the full generality of our setting, we show that the proposed entropy via covers is a lower bound to the proposed entropy via separated sets. Finally, we compute entropy for infinite graphs (and ultragraphs) and compare it with the entropy of infinite graphs defined by Gurevich.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.