Abstract

We define and investigate the notion of entropy for quantum error correcting codes. The entropy of a code for a given quantum channel has a number of equivalent realisations, such as through the coefficients associated with the Knill-Laflamme conditions and the entropy exchange computed with respect to any initial state supported on the code. In general the entropy of a code can be viewed as a measure of how close it is to the minimal entropy case, which is given by unitarily correctable codes (including decoherence-free subspaces), or the maximal entropy case, which from dynamical Choi matrix considerations corresponds to non-degenerate codes. We consider several examples, including a detailed analysis of the case of binary unitary channels, and we discuss an extension of the entropy to operator quantum error correcting subsystem codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call