Abstract
In these notes we first introduce logarithmic entropy methods for time-dependent drift-diffusion equations and then consider a kinetic model of Vlasov-Fokker-Planck type for traffic flows. In the spatially homogeneous case the model reduces to a special type of nonlinear driftdiffusion equation which may permit the existence of several stationary states corresponding to the same density. Then we define general convex entropies and prove a convergence result for large times to steady states, even if more than one exists in the considered range of parameters, provided that some entropy estimates are uniformly bounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.