Abstract
AbstractThermal stiffening materials that are naturally soft but adaptively self‐strengthen upon heat are intriguing for load‐bearing and self‐protection applications at elevated temperatures. However, to simultaneously achieve high modulus change amplitude and high mechanical strength at the stiffened state remains challenging. Herein, entropy‐mediated polymer–mineral cluster interactions are exploited to afford thermal stiffening hydrogels with a record‐high storage modulus enhancement of 13 000 times covering a super wide regime from 1.3 kPa to 17 MPa. Such a dramatic thermal stiffening effect is ascribed to the transition from liquid‐liquid to solid–liquid phase separations, and at the molecular level, driven by enhanced polymer–cluster interactions. The hydrogel is further processed into sheath–core fibers and smart fabrics, which demonstrate self‐strengthening and self‐powered sensing properties by co‐weaving another liquid metal fiber as both the joule heater and triboelectric layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.