Abstract
Entropies are among the most popular and promising complexity measures for biological signal analyses. Various types of entropy measures exist, including Shannon entropy, Kolmogorov entropy, approximate entropy (ApEn), sample entropy (SampEn), multiscale entropy (MSE), and so on. A fundamental question is which entropy should be chosen for a specific biological application. To solve this issue, we focus on scaling laws of different entropy measures and introduce an ensemble forecasting framework to find the connections among them. One critical component of the ensemble forecasting framework is the scale-dependent Lyapunov exponent (SDLE), whose scaling behavior is found to be the richest among all the entropy measures. In fact, SDLE contains all the essential information of other entropy measures, and can act as a unifying multiscale complexity measure. Furthermore, SDLE has a unique scale separation property to aptly deal with nonstationarity and characterize high-dimensional and intermittent chaos. Therefore, SDLE can often be the first choice for exploratory studies in biology. The effectiveness of SDLE and the ensemble forecasting framework is illustrated by considering epileptic seizure detection from EEG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.