Abstract

The present paper is devoted mainly to the half space problem for stationary Boltzmann-type equations. Using only conservation laws and the Boltzmann H-theorem we derive an inequality for unknown constant fluxes of mass, energy, and momentum. This inequality is expressed in terms of three parameters (pressure p, temperature T and the Mach number M) of the asymptotic Maxwellian at infinity. Geometrically the inequality describes a “physical” domain with positive entropy production in the 3-d space of the parameters. The domain appears to be qualitatively different for evaporation and condensation problems. We show that for given M, the curve p=p(M), T=T(M) of maximal entropy production practically coincides with the experimental evaporation curve obtained by Sone et al. on the basis of numerical solutions of BGK equation. Similar consideration for the condensation problem is also in qualitative agreement with known numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.