Abstract

Thermodynamic irreversibility in low dimensional flake is considered and entropy generation rate in two-dimensional thin film is examined, Equation of phonon radiative transfer is solved for two-dimensional and rectangular diamond flake. Volumetric and total entropy generation rate are evaluated incorporating the formulation of thermal radiation heat transfer. The influence of flake aspect ratio (width to height) on the entropy generation rate is explored while keeping the Diamond flake area constant for all aspect ratios considered. The findings reveal that the entropy generation rate increases with increasing aspect ratio for fixed boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call