Abstract

In present research, we concentrated on the characterization of Walters-B nanofluid flow to investigate the irreversibility mechanism. Energy equation incorporated with radiation effects and heat generation phenomena. Influence of activation energy is discussed using modified Arrhenius energy term along binary chemical reaction. The consequences of thermophoresis, Brownian motion and viscous dissipation on fluids velocity, temperature of fluid particles and concentration of involved chemical species. Set of ordinary differential equations are obtained by implementing appropriate similarity variables. Governing mathematical model is solved using homotopy analysis method. Flow behavior is analyzed through Nusselt number, coefficient of drag force and mass transfer rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.