Abstract

Entropy generation in the flow field subjected to a porous block situated in a vertical channel is examined. The effects of channel inlet port height (vertical height between channel inlet port and the block center), porosity, and block aspect ratio on the entropy generation rate due to fluid friction and heat transfer in the fluid are examined. The governing equations of flow, heat transfer, and entropy are solved numerically using a control volume approach. Air is used as the flowing fluid in the channel. A uniform heat flux is considered in the block and natural convection is accommodated in the analysis. It is found that entropy generation rate due to fluid friction increases with increasing inlet port height, while this increase becomes gradual for entropy generation rate due to heat transfer for the inlet port height exceeding 0.03 m. The porosity lowers entropy generation rate due to fluid friction and heat transfer. The effect of block aspect ratio on entropy generation rate is notable; in which case, entropy generation rate increases for the block aspect ratio of 1:2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.