Abstract
The article reports a numerical study of entropy generation in double-diffusive convection through a square porous cavity saturated with a binary perfect gas mixture and submitted to horizontal thermal and concentration gradients. The analysis is performed using Darcy–Brinkman formulation with the Boussinesq approximation. The set of coupled equations of mass, momentum, energy and species conservation are solved using the control volume finite-element method. Effects of the Darcy number, the porosity and the thermal porous Rayleigh number on entropy generation are studied. It was found that entropy generation considerably depends on the Darcy number. Porosity induces the increase of entropy generation, especially at higher values of thermal porous Rayleigh number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.