Abstract
This investigation addresses the influence of a buoyancy force on the flow of a couple stress hydromagnetic heat generating fluid across a porous channel with isothermal boundaries. The analytical formulations for the momentum and energy equations are derived to seek the solutions for the rate of fluid momentum, heat transfer and the rate of entropy generation with the use of a well known and efficient series solution of Adomian decomposition method (ADM). The findings are compared with earlier acquired findings for validation and hereby showed the speedy convergence of the series solution. The results showed the substantial influence of inward warmth inside the stream and buoyancy force on the motion and thermal energy of the flow system. Also, the activities of entropy generation generally occur maximally at the centreline of the flow stream with significant reduction with respect to buoyancy force and magnetic field strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.