Abstract

Two dimensional numerical analysis of entropy generation during transient convective heat transfer for laminar flow between two parallel plates has been investigated. The fluid is incompressible and Newtonian and the flow is the hydrodynamically and thermally developing. The plates are held at constant equal temperatures higher than that of the fluid. The bottom plate moves in either parallel or in inverse direction to the flow. The governing equations of the transient convective heat transfer are written in two-dimensional Cartesian coordinates and solved by the finite volume method with SIMPLE algorithm. The solutions are carried for Reynolds numbers of 102, 5x102 and 103 and Prandtl number of 1. After the flow field and the temperature distributions are obtained, the entropy values and the sites initiating the entropy generation are investigated. The results have indicated that the number of the entropy generation has its highest value at the highest Reynolds and Br/Ω values, which is obtained at counter motion of the lower plate. The lowest average number of the entropy generation on the bottom plate is obtained in parallel motion. The corners of the channel plates at the entrance play the role of active sites where the generation of entropy is triggered.

Highlights

  • One of the fundamental flow geometries encountered in engineering processes is the channel between two parallel plates

  • When a viscous fluid flows in a parallel plate channel, a velocity boundary layer develops along the inner surfaces of the channel

  • The effect of Br/Ω on the entropy generation in the combined entrance length was investigated by solving the problem for Br/Ω =0.1, 1, and 10

Read more

Summary

Introduction

One of the fundamental flow geometries encountered in engineering processes is the channel between two parallel plates. If the plates have different thermal conditions the heat transfer starts from the inlet of the channel and temperature profile develops simultaneously along the inside duct surfaces.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.