Abstract

Thermodynamic optimisation for latent heat thermal energy storage unit (LHSU) is carried out using the theory of minimisation of entropy generation number. The influence of key parameters like heat transfer fluid (HTF) inlet temperature, initial temperature of phase change material (PCM) and mass flow rates of HTF on entropy generation number is analysed. Analysis is carried out for two PCMs, i.e., paraffin wax and stearic acid, with different melting temperature to establish the influence of melting temperature of PCM on entropy generation number. The results show that minimum HTF inlet temperature provides minimum entropy generation number. The results also demonstrate that higher initial temperature of PCM provides minimum entropy generation number during solidification process. The mass flow rate of HTF has negligible influence on the entropy generation number compared with the influence of fluid inlet temperature and initial temperature of PCM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.