Abstract

The purpose of this article is to analyze the entropy generation and heat and mass transfer of carbon nano-tubes (CNTs) nanofluid by considering the applied magnetic field under the influence of thermal radiation, variable thermal conductivity, variable mass diffusivity, and binary chemical reaction with activation energy over a linearly stretching cylinder. Convective boundary conditions on heat and mass transfer are considered. An isothermal model of homogeneous-heterogeneous reactions is used to regulate the solute concentration profile. It is assumed that the water-based nanofluid is composed of single and multi-walled carbon nanotubes. Employing a suitable set of similarity transformations, the system of partial differential equations is transformed into the system of nonlinear ordinary differential equations before being solved numerically. Through the implementation of the second law of thermodynamics, the total entropy generation is calculated. In addition, entropy generation for fluid friction, mass transfer, and heat transfer is discussed. This study is specially investigated for the impact of the chemical reaction, and activation energy with entropy generation subject to distinct flow parameters. It is found that the slip parameters greatly influence the flow characteristics. Fluid temperature is elevated with higher radiation parameters and thermal Biot number. Entropy and Bejan number are found to be an increasing function of solid volume fraction, magnetic field, and curvature parameters. Binary chemical reaction and activation energy on concentration profile have opposite effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call