Abstract

PurposeThe purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an inclined magnetic field within a porous medium on a nonlinear stretching plate. This investigation is conducted by using neural networking techniques, specifically using neural networks-backpropagated with the Levenberg–Marquardt scheme (NN-BLMS).Design/methodology/approachThe initial nonlinear coupled PDEs system that represented the MRCNFM is transformed into an analogous nonlinear ODEs system by the adoption of similarity variables. The reference data set is created by varying important MHD-MRCNFM parameters using the renowned Lobatto IIIA solver. The numerical reference data are used in validation, testing and training sets to locate and analyze the estimated outcome of the created NN-LMA and its comparison with the corresponding reference solution. With mean squared error curves, error histogram analysis and a regression index, better performance is consistently demonstrated. Mu is a controller that controls the complete training process, and the NN-BLMS mainly concentrates on the higher precision of nonlinear systems.FindingsThe peculiar behavior of the appropriate physical parameters on nondimensional shapes is demonstrated and explored via sketches and tables. For escalating amounts of inclination angle and Brinkman number, a viable entropy profile is accomplished. The angular velocity curve grows as the rotation viscosity and surface condition factors rise. The dominance of friction-induced irreversibility is observed in the vicinity of the sheet, whereas in the farthest region, the situation is reversed with heat transfer playing a more significant role in causing irreversibilities.Originality/valueTo improve the efficiency of any thermodynamic system, it is essential to identify and track the sources of irreversible heat losses. Therefore, the authors analyze both flow phenomena and heat transport, with a particular focus on evaluating the generation of entropy within the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.