Abstract

The entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes was numerically performed by using a Reynolds stress model. The simulations were conducted for a smooth tube and five cases of corrugated tubes with Reynolds number (Re) ranging from 10,020 to 40,060 at a constant wall temperature condition. The effects of corrugation pitch and height on the flow patterns as well as local thermal and frictional entropy generation are detailed in the near wall region. The results indicate that the local heat transfer entropy generation is significantly evident at the sub-layer region and the detached vortex region, and the local thermal entropy is improved with increases in the secondary flow. Local friction entropy generation is mainly located at the windward of the corrugation and the severely turbulent fluctuation region and is mainly induced by the velocity gradient. The average friction entropy generation exhibits an exponential growth, while the average heat transfer and the total entropy generation display a linear growth trend with increased Re. The average Bejan number (Be) exhibits an exponential decline, and the minimum value can reach 0.69. From a comprehensive viewpoint, it is optimal for the Re to be lower than 30,050. When Re <20,030, higher and dense corrugations are beneficial. When 20,030 < Re <30,050, low and spare corrugations are more optimal. Besides, the case with Hl/D = 0.08 is not recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call