Abstract

Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

Highlights

  • Water demand is growing worldwide as a result of rising population, increasing standards of living, industrialization, and, in some instances, wasteful water use and management policies

  • In order to gain a deeper understanding of the irreversibilities, a Second Law analysis is used to determine the components with maximum entropy generation in six different systems: multiple effect distillation (MED), multistage flash (MSF), direct contact membrane distillation (DCMD), mechanical vapor compression (MVC), reverse osmosis (RO), and humidification-dehumidification (HD or HDH)

  • Using the methods developed in preceding sections, the component and system level entropy production and the Second Law efficiency of several common seawater desalination technologies are evaluated

Read more

Summary

Introduction

Water demand is growing worldwide as a result of rising population, increasing standards of living, industrialization, and, in some instances, wasteful water use and management policies. A second method to evaluate the entropy generation due to chemical disequilibrium of the brine stream is based on the least work of separation.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.