Abstract
In this work, entropy generation impact in an axisymmetric flow of Carreau nanofluid due to a radially stretching sheet has been scrutinized along with non-linear thermal radiation. Both the shear-thickening and thinning of fundamental of Carreau nanofluid have been examined. Buongiorno model is adopted to capture the Brownian motion and thermophoresis influences by the presence of nanofluids. By picking appropriate transformations, constitutive equations of the present problem have been converted into the ordinary differential equation. The reduced system is solved by numerical technique bvp4c. The effect of non-dimensional pertinent parameters against the velocity, entropy, skin friction coefficient, temperature, Nusselt number, Bejan number, Sherwood number, and concentration are talked over and showed with the assistance of graphs and tables. Our obtained results show that entropy generation rises with increasing Brinkman number, magnetic field parameter, Eckert number, temperature difference, and diffusive variable while it declines for the Brownian diffusion parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.