Abstract
We obtain entropy formulas for Sinai–Ruelle–Bowen (SRB) measures with finite entropy given by inducing schemes. In the first part of the work, we obtain Pesin entropy formula for the class of noninvertible systems whose SRB measures are given by Gibbs-Markov induced maps. In the second part, we obtain Pesin entropy formula for invertible maps whose SRB measures are given by Young sets, taking into account a classical compression technique along the stable direction that allows a reduction of the return map associated with a Young set to a Gibbs-Markov map. In both cases, we give applications of our main results to several classes of dynamical systems with singular sets, where the classical results by Ruelle and Pesin cannot be applied. We also present examples of systems with SRB measures given by inducing schemes for which Ruelle inequality does not hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.