Abstract

We study the time correlation in the von Neumann entropy fluctuation of the tunable discrete-time quantum walk in one dimension, induced by the coin disorder arising from the temporal fractional Gaussian noise (fGn). The fGn is characterized by the Hurst exponent H, which provides three different correlation scenarios, namely antipersistent (0<H<0.5), memoryless (H=0.5), and persistent (0.5<H<1). We show the correlation of fGn is transferred to the coin's degree of entanglement and eventually transpires in the time correlation of the von Neumann entropy fluctuation. This study hints at the potential of using noise correlation as a resource to sustain information backflow via the interaction of quantum system with the noisy environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.