Abstract
We consider the problem of extracting a specific feature from a noisy signal generated by a multi-channels Remote Field Eddy Current Sensor. The sensor is installed on a mobile robot whose mission is the detection of anomalous regions in metal pipelines. Given the presence of noise that characterizes the data series, anomaly signals could be masked by noise and therefore difficult to identify in some instances. In order to enhance signal peaks that potentially identify anomalies we consider an entropy filter built on a-posteriori probability density functions associated with data series. Thresholds based on the Neyman-Pearson criterion for hypothesis testing are derived. The algorithmic tool is applied to the analysis of data from a portion of pipeline with a set of anomalies introduced at predetermined locations. Critical areas identifying anomalies capture the set of damaged locations, demonstrating the effectiveness of the filter in detection with Remote Field Eddy Current Sensor.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.