Abstract

We show how active transport of ions can be interpreted as an entropy facilitated process. In this interpretation, a particular change in the pore geometry through which substrates are transported gives rise to a driving force. This chemical energy provided by the chemical reaction is then used to create a protein geometry favorable for the uphill transport of ions. Attempts to estimate the energy available by this change in several proteins shows that an entropic contribution from the pore geometry is significant. We discuss how this effect can be used to understand how energy transduction in active transport can take place over a relatively long distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.