Abstract

Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A-site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A-site cations form hydrogen-, halogen- and even covalent bonding-interactions, making the cation-layer rigid in the solid form. Additionally, the rotation of ─NH3 + head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I-(CH2)3-NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt-pressed films are grown demonstrating the solvent- and vacuum-free perovskite films for future optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.