Abstract

Electrolyte engineering plays a crucial role in enhancing the performance of lithium metal batteries (LMBs) featuring high-voltage cathodes and limited lithium anodes, thereby unlocking their potential for high-energy electrochemical storage. Herein, an entropy-driven hybrid gel electrolyte with enhanced diversity in Li-ion solvation structures is designed by incorporating substantial amounts of insoluble LiPO2F2 and LiNO3 salts into LiPF6-based carbonate electrolytes, followed by in situ thermal polymerization. Specifically, the Li+ solvation structures are modulated via ionophilic NO3- and PO2F2- to generate an anion-rich solvation sheath and thus promote anion reduction at the electrode-electrolyte interface. The interfaces enriched in anion-derived inorganic components facilitate rapid ionic transport, thus enabling smooth and dense Li morphology and ultimately enhancing the electrochemical performance of LMBs. As a result, this high-hybrid gel electrolyte confers LMBs employing high-voltage NCM cathodes, as demonstrated by sustained performance in both coin-cell (500 cycles at 4.5 V) and Ah-level pouch cell configurations under practical conditions (60 cycles, N/P: 1.92, and E/C: 2.0 g Ah -1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call