Abstract
Flexible metal–organic frameworks (MOFs), showing a reversible phase change behavior in response to guest adsorption or temperature, provide unique opportunities for molecular separation or energy storage applications. Herein, we investigate the complex guest- and temperature-responsive behavior of a functionalized MOF-5 derivative. The material is characterized by a geometrically rigid network structure that is decorated with dispersion energy donating hexyloxy substituents. Distinguished by the phenomenon of frustrated flexibility, the functionalized MOF-5 derivative switches between a highly crystalline, cubic structure and a semi-crystalline, aperiodically distorted structure depending on guest adsorption and temperature. Via a combination of several variable temperature global and local structure techniques (x-ray diffraction, x-ray total scattering, and Fourier-transform IR spectroscopy), detailed insights into the complementary disorder–order transitions of the framework backbone and the dangling hexyloxy substituents are provided. Our results set the stage for the discovery of new responsive MOFs exhibiting a more complex phase change behavior interfacing periodic and aperiodic structural changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.