Abstract
Uncommon entropy-driven cooperativity is reported in the guest binding of an octaphosphonate bis-cavitand. Isothermal titration calorimetry determined the thermodynamic parameters for the 1:2 host-guest binding of bis-cavitands with ammonium guests in methanol, ethanol, 2-propanol, and chloroform. Chloroform drove uncommon entropy-driven cooperative binding, whereas the alcohols resulted in enthalpy-driven noncooperative binding. 1 H NMR studies revealed that each cavity contained six water molecules in chloroform, which were liberated on guest binding. The enthalpy-entropy compensation relationship produced a large positive intrinsic entropy in chloroform, which implies that water desolvation causes a considerable entropic gain by paying an enthalpic penalty due to breaking the hydrogen-bonding networks of the water clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.