Abstract

We propose a new semi-discretization scheme to approximate nonlinear Fokker–Planck equations, by exploiting the gradient flow structures with respect to the 2-Wasserstein metric in the space of probability densities. We discretize the underlying state by a finite graph and define a discrete 2-Wasserstein metric in the discrete probability space. Based on such metric, we introduce a gradient flow of the discrete free energy as semi discretization scheme. We prove that the scheme maintains dissipativity of the free energy and converges to a discrete Gibbs measure at exponential dissipation rate. We exhibit these properties on several numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call