Abstract

We study the nonlinear Fokker-Planck equation on graphs, which is the gradient flow in the space of probability measures supported on the nodes with respect to the discrete Wasserstein metric. The energy functional driving the gradient flow consists of a Boltzmann entropy, a linear potential and a quadratic interaction energy. We show that the solution converges to the Gibbs measures exponentially fast. The continuous analog of this asymptotic rate is related to the Yano's formula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call