Abstract
We study the use of von Neumann entropy constraints for obtaining lower bounds on the ground energy of quantum many-body systems. Known methods for obtaining certificates on the ground energy typically use consistency of local observables and are expressed as semidefinite programming relaxations. The local marginals defined by such a relaxation do not necessarily satisfy entropy inequalities that follow from the existence of a global state. Here, we propose to add such entropy constraints that lead to tighter convex relaxations for the ground energy problem. We give analytical and numerical results illustrating the advantages of such entropy constraints. We also show limitations of the entropy constraints we construct: they are implied by doubling the number of sites in the relaxation and as a result they can at best lead to a quadratic improvement in terms of the matrix sizes of the variables. We explain the relation to a method for approximating the free energy known as the Markov Entropy Decomposition method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.