Abstract

Recently, lattice vector quantizers (LVQ) capable of performing close to known information theoretic bounds were introduced in the area of multiple description coding (MDC). We derive analytical expressions for the central and side quantizers which minimize the expected distortion of an LVQ subject to entropy constraints on the side descriptions for given packet loss probabilities. We show that for certain packet loss probabilities, an optimal LVQ for single descriptions might not be optimal for multiple descriptions. Specifically, we show that the Z/sup 2/ lattice performs better than the A/sub 2/ lattice in some cases. Moreover, our results suggest a practical way of determining which lattice quantizers are optimal for given packet loss probabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.