Abstract

Compensation between adsorption entropies and enthalpies results in less than a two-fold variation in adsorption equilibrium constants for C 3–C 6 alkanes at temperatures relevant for monomolecular cracking; the size-independent activation energy for C C bond activation in C 3–C 6 alkanes indicates that the marked increase in monomolecular cracking turnover rates observed with alkane chain size reflects a concurrent increase in activation entropies. Thermodynamic treatments for non-ideal systems rigorously describe confinement effects within zeolite channels and show that pre-exponential factors depend on solvation effects of the zeolite-host environment through variations in the thermodynamic activity of the zeolitic proton. Observed differences in rates and selectivities of monomolecular alkane activation with zeolite structure, after normalization to intrazeolitic concentrations, reflect differences in intrinsic rate constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.