Abstract

For general metric theories of gravity, we compare the approach that describes/derives the field equations of gravity as a thermodynamic identity with the one which looks at them from entropy bounds. The comparison is made through the consideration of the matter entropy flux across (Rindler) horizons, studied by making use of the notion of a limiting thermodynamic scale l* of matter, previously introduced in the context of entropy bounds. In doing this: (i) a bound for the entropy of any lump of matter with a given energy-momentum tensor Tab is considered, in terms of a quantity, which is independent of the theory of gravity that we use; this quantity is the variation of the Clausius entropy of a suitable horizon when the element of matter crosses it; (ii) by making use of the equations of motion of the theory, the same quantity is then expressed as the variation of Wald’s entropy of that horizon (and this leads to a generalized form of the generalized covariant entropy bound, applicable to general diffeomorphism-invariant theories of gravity); and (iii) a notion of l* for horizons, as well as an expression for it, is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.