Abstract

We introduce a novel and universal method for fast optical high, as well as super-resolution imaging. Our method is based on reconstructing super-resolved images from conventional image sequences containing rapid random signal fluctuations. Such sequences could be obtained from either wide-field single-molecule blinking experiments or rapid image sequences with fluorophores undergoing random intensity fluctuations. By calculating the local entropy (H) and cross-entropy (xH) values pixel-by-pixel, weighted with higher order statistics (HOS), a new image with pixel intensities representing the true information content in the time series is obtained. We show that analyzing image sequences by this formalism enables the reconstruction of super-resolved images, where the optical resolution that can be achieved depends only on the number of input frames and the higher order moments used for the calculation. We find that the acquisition of <100 frames per sequence is sufficient to reconstruct super-resolved image...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call