Abstract
Much work in the parimutuel betting literature has discussed estimating event outcome probabilities or developing optimal wagering strategies, particularly for horse race betting. Some betting pools, however, involve betting not just on a single event, but on a tuple of events. For example, pick six betting in horse racing, March Madness bracket challenges, and predicting a randomly drawn bitstring each involve making a series of individual forecasts. Although traditional optimal wagering strategies work well when the size of the tuple is very small (e.g., betting on the winner of a horse race), they are intractable for more general betting pools in higher dimensions (e.g., March Madness bracket challenges). Hence we pose the multi-brackets problem: supposing we wish to predict a tuple of events and that we know the true probabilities of each potential outcome of each event, what is the best way to tractably generate a set of n predicted tuples? The most general version of this problem is extremely difficult, so we begin with a simpler setting. In particular, we generate n independent predicted tuples according to a distribution having optimal entropy. This entropy-based approach is tractable, scalable, and performs well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.