Abstract

Segmentation of abnormal masses in kidney images is a tough task. One of the main challenges is the presence of speckle noise, which will restrain the valuable information for the medical practitioners. Hence, the detection and segmentation of the affected regions vary in accuracies. The proposed model includes pre-processing and segmentation of the diseased region. The pre-processing consists of Gaussian filtering and Contrast Limited Adaptive Histogram Equalization (CLHE) to improve the clarity of the images. Further, segmentation has been done based on the entropy of the image and gamma correction has been done to improve the overall brightness of the images. An optimal global threshold value is selected to extract the region of interest and measures the area. The model is analyzed with statistical parameters like Jaccard index and Dice coefficient and compared with the ground truth images. To check the accuracy of the segmentation, relative error is calculated. This framework can be used by radiologists in diagnosing kidney patients

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.