Abstract
Given the evolution of an arbitrary open quantum system, we formulate a general and unambiguous method to separate the internal energy change of the system into an entropy-related contribution and a part causing no entropy change, identified as heat and work, respectively. We also demonstrate that heat and work admit geometric and dynamical descriptions by developing a universal dynamical equation for the given trajectory of the system. The dissipative and coherent parts of this equation contribute exclusively to heat and work, where the specific role of a work contribution from a counterdiabatic drive is underlined. Next we define an expression for the irreversible entropy production of the system which does not have explicit dependence on the properties of the ambient environment; rather, it depends on a set of the system's observables excluding its Hamiltonian and is independent of internal energy change. We illustrate our results with three examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.