Abstract

The principle of maximum entropy, along with empirical considerations, can provide consistent basis for constructing a consistent probability distribution model for highly varying geophysical processes. Here we examine the potential of using this principle with the Boltzmann–Gibbs–Shannon entropy definition in the probabilistic modeling of rainfall in different areas worldwide. We define and theoretically justify specific simple and general entropy maximization constraints which lead to two flexible distributions, i.e., the three-parameter Generalized Gamma (GG) and the four-parameter Generalized Beta of the second kind (GB2), with the former being a particular limiting case of the latter. We test the theoretical results in 11,519 daily rainfall records across the globe. The GB2 distribution seems to be able to describe all empirical records while two of its specific three-parameter cases, the GG and the Burr Type XII distributions perform very well by describing the 97.6% and 87.7% of the empirical records, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call