Abstract

We describe cosmic expansion as correlated with the standpoints of local observers’ co-moving horizons. In keeping with relational quantum mechanics, which claims that quantum systems are only meaningful in the context of measurements, we suggest that information gets ergodically “diluted” in our isotropic and homogeneous expanding Universe, so that an observer detects just a limited amount of the total cosmic bits. The reduced bit perception is due the decreased density of information inside the expanding cosmic volume in which the observer resides. Further, we show that the second law of thermodynamics can be correlated with cosmic expansion through a relational mechanism, because the decrease in information detected by a local observer in an expanding Universe is concomitant with an increase in perceived cosmic thermodynamic entropy, via the Bekenstein bound and the Laudauer principle. Reversing the classical scheme from thermodynamic entropy to information, we suggest that the cosmological constant of the quantum vacuum, which is believed to provoke the current cosmic expansion, could be one of the sources of the perceived increases in thermodynamic entropy. We conclude that entropies, including the entangled entropy of the recently developed framework of quantum computational spacetime, might not describe independent properties, but rather relations among systems and observers.

Highlights

  • Relational properties among quantum systems are the most fundamental elements to construct quantum mechanics, instead of being independent properties [1,2]. This strong claim, suggested by relational formulations of quantum mechanics, has been supported by recent papers, which state that the experimentally detected correlations in Bell tests strongly contradict the tenet of local realism, i.e., the properties of the physical world are independent of our observation of them [3]

  • We partially explain the occurrence of the second law of thermodynamics through the issue of the cosmic expansion, that leads to a diluted information for a local observer, and, to their detection of increases in thermodynamic entropy

  • Our approach is based upon the relational formulations of quantum mechanics, where information is considered the most general paradigm to investigate cosmological and physical systems

Read more

Summary

Introduction

Relational properties among quantum systems are the most fundamental elements to construct quantum mechanics, instead of being independent properties [1,2]. Quantum mechanics has been reformulated as a theory that describes physical systems in terms of observer-dependent relational properties. This framework is inspired by the key idea behind special relativity, i.e., that the details of an observation depend on the reference frame of the observer. We aim to use relational properties to describe two well-known physical phenomena, such as thermodynamic and information entropy, in terms of dependence from an observer embedded in their comoving cosmic horizon. We show how this relational framework might be extended to encompass the recently-developed theory of quantum computational spacetime and related entanglement entropy [5]

Information
Thermodynamic Entropy
Cosmic Expansion Comes into Play
Entangled Spacetime and Comoving Horizons
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.