Abstract

In this article we continue the development of methods of estimating n-widths and entropy of multiplier operators begun in 1992 by A. Kushpel (Fourier Series and Their Applications, pp. 49–53, 1992; Ukr. Math. J. 45(1):59–65, 1993). Our main aim is to give an unified treatment for a wide range of multiplier operators Λ on symmetric manifolds. Namely, we investigate entropy numbers and n-widths of decaying multiplier sequences of real numbers \(\varLambda=\{\lambda_{k}\}_{k=1}^{\infty}\), |λ1|≥|λ2|≥⋯, \(\varLambda:L_{p}(\mathbb{M}^{d}) \rightarrow L_{q}(\mathbb{M}^{d})\) on two-point homogeneous spaces \(\mathbb{M}^{d}\): \(\mathbb{S}^{d}\), ℙd(ℝ), ℙd(ℂ), ℙd(ℍ), ℙ16(Cay). In the first part of this article, general upper and lower bounds are established for entropy and n-widths of multiplier operators. In the second part, different applications of these results are presented. In particular, we show that these estimates are order sharp in various important situations. For example, sharp order estimates are found for function sets with finite and infinite smoothness. We show that in the case of finite smoothness (i.e., |λk|≍k−γ(lnk)−ζ, γ/d>1, ζ≥0, k→∞), we have \(e_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d})) \ll d_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d}))\), n→∞, but in the case of infinite smoothness (i.e., \(|\lambda_{k}| \asymp e^{-\gamma k^{r}}\), γ>0, 0<r≤1, k→∞), we have \(e_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d})) \gg d_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d}))\), n→∞ for different p and q, where \(U_{p}(\mathbb{S}^{d})\) denotes the closed unit ball of \(L_{p}(\mathbb{S}^{d})\).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call