Abstract

Life science students develop a variety of resources for thinking about entropy and spontaneity in their biology, chemistry, and introductory physics courses. Helping students to develop a deeper and more coherent conceptual framework for organizing these varied ideas means attending carefully to the ways in which students interact with different disciplinary descriptions and to the ways in which these descriptions may be in tension. Canonical introductory physics treatments of the second law of thermodynamics, while useful in some contexts, may not be the most productive ones in authentic biological or chemical contexts. We draw on case-study interviews with introductory physics for life science students to argue that an approach to the second law of thermodynamics that emphasizes the interplay of energy and entropy in determining spontaneity (one that involves a central role for free energy) is one that draws on students' resources from biology and chemistry in particularly effective ways. We see the positioning of entropic arguments alongside energetic arguments in the determination of spontaneity as an important step toward making our life science students' biology, chemistry, and physics experiences more coherent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call