Abstract

In order to find more correlations between entropy and other related quantities, an analogical analysis is conducted between thermal science and other branches of physics. Potential energy in various forms is the product of a conserved extensive quantity (for example, mass or electric charge) and an intensive quantity which is its potential (for example, gravitational potential or electrical voltage), while energy in specific form is a dissipative quantity during irreversible transfer process (for example mechanical or electrical energy will be dissipated as thermal energy). However, it has been shown that heat or thermal energy, like mass or electric charge, is conserved during heat transfer processes. When a heat transfer process is for object heating or cooling, the potential of internal energy U is the temperature T and its potential “energy” is UT/2 (called entransy and it is the simplified expression of thermomass potential energy); when a heat transfer process is for heat-work conversion, the potential of internal energy U is (1 − T0/T), and the available potential energy of a system in reversible heat interaction with the environment is U − U0 − T0(S − S0), then T0/T and T0(S − S0) are the unavailable potential and the unavailable potential energy of a system respectively. Hence, entropy is related to the unavailable potential energy per unit environmental temperature for heat-work conversion during reversible heat interaction between the system and its environment. Entropy transfer, like other forms of potential energy transfer, is the product of the heat and its potential, the reciprocal of temperature, although it is in form of the quotient of the heat and the temperature. Thus, the physical essence of entropy transfer is the unavailable potential energy transfer per unit environmental temperature. Entropy is a non-conserved, extensive, state quantity of a system, and entropy generation in an irreversible heat transfer process is proportional to the destruction of available potential energy.

Highlights

  • It is well known that entropy has a wide use in the second-law analysis of engineering devices.its macroscopic physical meaning is thought to be difficult to understand, even for Prigogine, the Nobel Prize winner, who has indicated that [1] “...entropy is a very strange concept without hoping to achieve a complete description...”

  • This paper aims to further clarify more correlations between entropy and other related quantities within the framework of classical thermodynamics in terms of introducing the potential and potential energy of heat based on the analogy of thermodynamics/heat transfer with other branches of physics

  • The analogies between thermodynamics/heat transfer and fluid mechanics, electrics show that the potential and the potential energy transfer accompanying heat transfer are the temperature, T, and the product of the heat transfer and temperature, QT, respectively as the transferred heat is for object heating or cooling, while the potential and the potential energy transfer accompanying heat transfer are 1 T0 / T and Q(1 T0 / T ), respectively, as the transferred heat is for heat-work conversion, where QT0 / T is the unavailable energy transfer

Read more

Summary

Introduction

It is well known that entropy has a wide use in the second-law analysis of engineering devices. Its macroscopic physical meaning is thought to be difficult to understand, even for Prigogine, the Nobel Prize winner, who has indicated that [1] “...entropy is a very strange concept without hoping to achieve a complete description...”. People are so confused about this concept that the macroscopic physical meaning of entropy is rarely discussed both in textbooks and the literature. This paper aims to further clarify more correlations between entropy and other related quantities within the framework of classical thermodynamics in terms of introducing the potential and potential energy of heat based on the analogy of thermodynamics/heat transfer with other branches of physics. It is hoped that the discussion will shed some light on the macroscopic physical meaning of entropy

Exergy and Entropy
Potentials and Potential Energies in Mechanics and Electrics
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.