Abstract
We investigate the limiting behavior of random tree growth in preferential attachment models. The tree stems from a root, and we add vertices to the system one-by-one at random, according to a rule which depends on the degree distribution of the already existing tree. The so-called weight function, in terms of which the rule of attachment is formulated, is such that each vertex in the tree can have at most K children. We define the concept of a certain random measure μ on the leaves of the limiting tree, which captures a global property of the tree growth in a natural way. We prove that the Hausdorff and the packing dimension of this limiting measure is equal and constant with probability one. Moreover, the local dimension of μ equals the Hausdorff dimension at μ-almost every point. We give an explicit formula for the dimension, given the rule of attachment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.