Abstract

Research Tools in Anomaly-based Intrusion Detection are highly dependent on appropriate traffic trace data. Traditional datasets present several issues such as: removal of sensitive information (anonymization) and insufficient number or volume of attack instances, which limit their quality for the design and evaluation of A-NIDSs. In this paper, we present a method for anomalous traffic filtering which can be used for generating anomaly-free traffic traces. The sanitized dataset can be used to improve the computation of the behaviour profiles during the training stage. The proposal is based on the construction and statistical analysis of the flow-level entropy space for the identification of outliers using three entropy estimators. Empirical results showed that the new traffic traces of the sanitized dataset have a distributional similarity among them greater than that presented among the original datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.