Abstract

The notion of a random graph is formally defined. It deals with both the probabilistic and the structural aspects of relational data. By interpreting an ensemble of attributed graphs as the outcomes of a random graph, we can use its lower order distribution to characterize the ensemble. To reflect the variability of a random graph, Shannon's entropy measure is used. To synthesize an ensemble of attributed graphs into the distribution of a random graph (or a set of distributions), we propose a distance measure between random graphs based on the minimum change of entropy before and after their merging. When the ensemble contains more than one class of pattern graphs, the synthesis process yields distributions corresponding to various classes. This process corresponds to unsupervised learning in pattern classification. Using the maximum likelihood rule and the probability computed for the pattern graph, based on its matching with the random graph distributions of different classes, we can classify the pattern graph to a class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.