Abstract

We examine the entropy analysis in three-dimensional hydromagnetic flow and convective heat transport of a biviscosity nanofluid over a rotating porous disk with a time-dependent stretching rate in the direction of the radius of the circular disk. We also examine the influence of thermal radiation and viscous dissipation due to nanoparticles and applied magnetic field. We invoked suitable self-similar transformations to covert the modeled coupled nonlinear PDEs into a set of nonlinear ODEs. The transformed system of equations is then worked out numerically by a well-known shooting technique and the fourth-order Runge–Kutta–Fehlberge method. The rotating phenomenon yields an additional parameter known as a rotation parameter, which controls the disk’s rotation. The study shows that the fluid motion is accelerated along the radial and cross-radial directions with an increase in the rotation of the disk. The skin-friction and the heat transfer rate at the disk strongly depend on the rotation of the disk, permeability of the porous medium, thermal radiation, and nanoparticle size. The Bejan number quantifies the entropy production of the system. It has a considerable impact on the magnetic field, rotation of the disk, thermal radiation, and Biot number. The efficient performance of the system is possible by a suitable choice of the physical parameters discussed in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call