Abstract
We study the behavior of tunable one-dimensional discrete-time quantum walk (DTQW) in the presence of decoherence modeled by the flip-bit noise channel. By varying the noise intensity, we obtain a wide range of probability distributions of noisy walks, which can be loosely characterized as pure quantum walk, quantum-like walk, semi-classical like walk, and classical-like walk. We show the maximum Shannon entropy of the walk is not obtained under maximum decoherence, but instead at a lower degree of decoherence. This result may be useful for the implementation of quantum error correction, quantum cryptography, and quantum communication protocol, where one might expect the qubit internal state to be flipped due to noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.